

Progressive Education Society's Modern College of Arts, Science & Commerce Ganeshkhind, Pune – 16

Even Semester Examination: April 2023-2024 Faculty: Science and Technology

Program: BSc Comp05 Semester: IV Set: B

Program (Specific):B.Sc. Computer Science Course Type: Core

Class: S.Y.B.Sc(Comp. Sci.) Max. Marks: 35
Name of the Course: Operations Research Course Code: 23-MTC-242

Paper no.: II Time: 2Hrs

Instructions to the candidate:

1) There are 3 sections in the question paper. Write each section on separate page.

2) All Sections are compulsory.

3) Figures to the right indicate full marks.

4) Draw a well labelled diagram wherever necessary.

SECTION: A

Q1) Solve any 5 of the following.

(10 Marks)

a) Write the standard form of the following LPP Maximize Z = 5x + 3ySubject to;

$$3x + 2y \le 6$$
$$3x + y = 4,$$
$$x, y \ge 0.$$

b) Convert the following assignment problem to a balanced assignment problem.

7	6	5	2
3	7	3	3
2	9	7	2

c) Solve the following transportation problem by North West Corner Method.

	D1	D2	D3	Supply
01	13	15	16	17
O2	7	11	2	12
О3	19	20	9	16
Demand	14	8	23	

- d) Explain the method to convert a unbalanced transportation problem to a balanced transportation problem.
- e) Draw the feasible region for the following constraints.

$$-x + y \ge 2$$

$$x-y \ge 2$$
,

$$x, y \ge 0$$
.

- f) Define i) Surplus Variable
 - ii) Feasible solution of a Linear programming problem.
- g) Following is the optimal table of a LPP. Comment on the solution type.

СВ	XB	X	Y	S1	S2	S3	b
6	X	1	1/2	1/2	0	0	4
0	S2	0	3/2	-3/2	1	0	6
0	S 3	0	1	0	0	1	3
	Zj -Cj	0	0	3	0	0	

SECTION: B

Q.2) Solve any 3 of the following.

(Marks 15)

a) Solve the following LPP graphically.

Maximize
$$Z = x + 2y$$

Subject to;

$$x + 2y \le 20$$

$$x + y \le 12$$

$$x \le 10$$

$$x, y \ge 0$$

b) Find the IBFS of the following Transportation Problem using Vogel's Approximation Method.

	D1	D2	D 3	D4	Supply
01	3	7	6	4	5
O2	2	4	3	2	2
О3	4	3	8	5	3
Demand	3	3	2	2	

c) Using simplex method, show that the following LPP has an unbounded solution.

Maximize
$$Z = 2x + 3y$$

Subject to;

$$-3x + y \le 4$$

$$x - y \le 2,$$

$$x, y \ge 0$$
.

d) Solve the assignment problem to minimize the cost.

Person →	P1	P2	P3	P4	P5
Job↓					
J1	3	8	2	10	3
J2	8	7	2	9	7
J3	6	4	2	7	5
J4	8	4	2	3	5
J5	9	10	6	9	10

e) Prove that dual of dual is primal for the following LPP.

Maximize
$$Z = 2x + 3y + z$$

Subject to;

$$3x - y + 4z \le 9$$

$$x + 3y - z \le 2$$

$$x, y \ge 0$$

SECTION: C

Q.3) Solve any 1 of the following.

(Marks 10)

a) Solve the following LPP using Big M method.

$$Minimize Z = 8x_1 + 10 x_2$$

Subject to:

$$8x_1 + 6x_2 \ge 150$$

$$2x_1 + 9x_2 \ge 120$$
,

$$x_1, x_2 \ge 0.$$

b) Find the IBFS of the following Transportation Problem using Matrix Minima Method. Hence find optimal solution using MODI method.

	D1		D2	D3	Supply
01		5	3	12	60
O2		3	10	4	40
О3		3	5	1	40
Demand	30		65	45	
